目的 探讨铜银离子协同氯化消毒对病毒核酸的破坏作用. 方法 铜银离子协同氯化消毒(40μg?L-1 银离子,400μg?L-1 铜离子和0.3mg?L-1 游离氯)前后用逆转录PCR的方法检测协同消毒前后脊灰病毒的核酸,并用免疫印记法(DIBA)检测脊灰病毒的抗原性(蛋白质);用核酸修复实验测定噬菌体f2 的核酸修复率,并用血清学方法检测噬菌体f2的抗原性. 结果 RT-PCR检测显示铜银离子协同氯化消毒前脊髓灰质炎病毒Ⅰ型(PVI)的特异条带为阳性,协同消毒后的为阴性;DIBA检测显示协同消毒前后的结果均为阳性.铜银离子协同氯化消毒灭活作用后,大肠杆菌噬菌体f2 的核酸修复率随作用时间延长而降低;噬菌体的抗原性与正常无明显差别. 结论 结果提示铜银离子协同氯化消毒灭活水中病毒的作用位点可能在病毒的核酸.
Destructive effect of copper and silver ions with free chlorine on nucleic acid of polioviruses
LUO Wen-Jing,ZHANG Jin,MIAO Shan,HOU Yue
Department of Environment and Occupational Hy-giene,Faculty of Preventive Medicine,Fourth Mili-tary Medical University,Xi\'an710033,China
Keywords:disinfection;coliphage;poliovirus
Abstract:AIM To study destructive effect of copper and silver ions in cooperation with free chlorine on nucleic acid of viruses.METHODS RNA of poliovirus was determined by using RT-PCR and the antigenicity of poliovirus was detected by using dot immunobinding assays(DIBA)before and after synergistic disinfection.The repair rate of nucleic acid of col-iphage was assayed by using nucleic acid repair experiment,and the antigenicity of coliphage was observed by using serological reaction methods.RESULTS RT-PCR showed that poliovirus I had a positive specific band before disinfec-tion,and a negative one after synergistic disinfection;DIBA showed that positive results both before and after disinfection were positive results by DIBA.The experiment on repair of nucleic acid showed that the repair rate of nucleic acid of col-iphage exposed to synergetic disinfection declined with time of action.Antigenicity of coliphage f2 showed no significant dif-ference before and after disinfection.CONCLUSION During synergistic inactivation of coliphage and poliovirus by copper and silver ions in cooperation with free chlorine,the site of their inactivation is probably nucleic acid.
0 引言
铜银离子可以增加在低浓度氯条件下对水中微生物的灭活作用[1-5] .当用400μg?L -1 铜离子,40μg?L-1 银离子和0.3mg?L-1 的游离氯协同作用后对病毒灭活效果较好
[6,7] .但关于三者协同作用灭活病毒的作用部位是作用于病毒衣壳蛋白还是病毒的核酸尚不清楚.为进一步了解协同消毒后病毒的作用位点以及核酸的修复及变化情况,我们进行了有关观察如下.
1 材料和方法
1.1 材料
以大肠杆菌(285)为宿主菌,制备大肠杆菌噬菌体f2原液.经40000r?min-1 离心4h,取沉淀,用灭菌的双蒸去离子水配成大肠杆菌噬菌体悬液,浓度为2.0×108 ~2.5×108 pfu?L
-1 .用人表皮样癌细胞(HEP-2)繁殖脊髓灰质炎病毒I型(PVI)[8],收获的病毒用聚乙二醇-6000结合差速离心方法浓缩及纯化[9],将其加入灭菌的双蒸去离子水中,制成浓度为3.0×106 ~5.5×107 pfu?L-1 的病毒悬液.用52.5g?L-1 的次氯酸钠溶液配置游离氯.使用前用N,N-二乙基对苯二胺-硫酸亚铁胺容量法(DPD)测其浓度;铜银离子分别用双蒸去离子水溶解硝酸铜和硝酸银配置而成,使用前用原子吸收光谱法测其浓度. 1.2 方法 1.2.1 脊髓灰质炎病毒核酸及蛋白质的检测 按分子克隆实验指南提取核酸,用逆转录聚合酶链反应(RT-PCR)方法检测核酸[10] ;免疫印记法(DIBA)检测病毒的抗原性(蛋白质)[11] .
1.2.2 大肠杆菌噬菌体蛋白质的检测
分别将经铜银离子协同氯化消毒灭活及煮沸灭活后的噬菌体悬液1mL与等量经1∶10000稀释的按Adams[12]法制备的抗血清混合,对照组为不加抗血清的噬菌体.以上各组均置37℃水浴30min,然后再分别加入1mL正常的噬菌体悬液,继续置37℃水浴作用30min.两次水浴后分别检测噬菌体存活数.将各组第2次水浴后的存活数减去第1次的存活数,以各试验组存活数的差值分别除以对照组存活数的差值,得出各组抗血清(抗体)与噬菌体抗原(蛋白质)的结合率,结合率越高其抗原性越大.实验重复5次.
1.2.3噬菌体核酸修复试验 向0.05mol?L-1 磷酸盐缓冲液(pH7.4)100mL中加1mL噬菌体悬液(含2.5×108 pfu?L-1 ),以及400μg?L-1 铜离子,40μg?L-1 银离子和0.3mg?L-1 游离氯.作用至预定时间,加146g?L-1 硫代硫酸钠和100g?L-1 硫代乙醇酸钠溶液0.1mL终止消毒剂的作用.取1mL混合液接种宿主菌;另取1mL加入9mL肉汤中,置37℃温箱内30min以修复核酸,然后取1mL接种宿主菌.两组均于37℃培养24h后,计数噬菌斑,并与对照组(未经药物作用)者相比,计算存活率.修复组与未修复组的存活率之差即为核酸修复率.
统计学分析:采用χ2 检验.
2 结果
2.1 铜银离子协同氯化消毒后病毒核酸的变化
RT-PCR检测PVI电泳照片显示消毒前的阳性PVI型野毒株,其扩增产物为214bp的特异的单一核酸带;400μg?L-1 铜离子,40μg?L-1 银离子和0.3mg?L-1 的游离氯协同作用后的样品及实验对照均为阴性(Fig1).
2.2 铜银离子协同氯化消毒后病毒抗原性变化
DIBA检测显示协同消毒前脊灰病毒的抗原性为阳性;400μg?L-1 铜离子,40μg?L-1 银离子和0.3mg?L-1 的游离氯协同作用后其抗原性仍为阳性.
2.3 铜银离子协同氯化消毒后f2 噬菌体抗原性变化 检测表明,经400μg?L-1 铜离子,40μg?L-1 银离子和0.3mg?L-1 的游离氯协同作用灭活的f2 噬菌体与抗血清结合率远较经煮沸灭活者高(Tab1).
前者与未经灭活处理组相差不显著(Ρ>0.05).表1 不同方法灭活的f2 噬菌体与抗血清的结合率(略)
2.4 铜银离子协同氯化消毒后f2 噬菌体核酸的修复
经400μg?L-1 铜离子,40μg?L-1 银离子和0.3mg?L-1 的游离氯协同作用3,5min,经37℃修复,f2 的修复率分别为0.020%和0.006%;作用8min,f2 的核酸不再修复(Tab2).
表2 铜银离子协同氯化消毒后f(略)
3 讨论
铜离子作为控制水中细菌、芽胞、藻类生长已被使用多年.铜离子可以破坏敏感细胞呼吸酶的巯基,抑制酶的活性;也有学者报道铜离子可破坏核酸的结构[13] .微量银离子对细菌的杀灭作用是通过银离子与微生物含巯基的酶结合,抑制酶的活性,使微生物死亡[14] .单纯的游离氯,对水中细菌有较好的灭活作用,但对病毒的灭活作用较差,认为氯可破坏微生物体内含巯基的酶,或进入微生物体内与核酸相结合,使核酸失去正常的生化活性,致使微生物死亡[15,16] .由此可知单独的铜离子、银离子或游离氯对微生物的灭活作用是通过破坏其核酸或蛋白衣壳来实现的.我们用RT-PCR检测消毒前后PVI样品发现铜银离子协同氯化消毒灭活病毒样品的RT-PCR结果为阴性,说明PVI的核酸可能被破坏;脊灰病毒的蛋白衣壳由60个以非共价键连接的衣壳子粒组成,每个子粒含有4种结构蛋白,称为VP1,VP2,VP3和VP4,研究表明引起脊灰病毒中和反应的抗原位点主要在病毒衣壳的结构蛋白,本实验DIBA检测PVI样品显示协同消毒前后抗原均为阳性,说明病毒的蛋白衣壳没有被破坏.结果提示铜银离子协同氯化消毒对病毒的灭活部位可能在病毒的核酸.
铜银离子协同氯化消毒作用后f2 噬菌体的抗原性与消毒前相比没有明显变化,由于f2 噬菌体属于RNA噬菌体,其抗原性来自外壳蛋白所含180个相同的蛋白分子,故其抗原性无明显变化的结果可表明f2 噬菌体的蛋白衣壳没有被破坏.铜银离子协同氯化消毒作用后f2 噬菌体核酸的修复率随时间延长而将低,作用8min核酸不再能修复.由此认为铜银离子协同氯化消毒对f
2 噬菌体的灭活部位可能在f2 噬菌体的核酸.
参考文献:
[1]Abad FX,Pinto RM,Diez JM Bosch A.Disinfection of human enteric viruses in water by copper and silver in combination with low levels of chlorine[J].Appl Environ Microbiol,1994;60(7):2377-2383.
[2]Abad FX,Pinto RM,Bosch A.Flow cytometry detection of in-fectious rotaviruses in environmental and clinical samples[J]. Appl Environ Microbiol,1998;64(7):2392-2396.
[3]Liu Z,Stout JE,Boldin M,Rugh J,Diven WF,Yu VL.Intermit-tent use of copper-silver ionization for Legionella control in wa-ter distribution systems:A potential option in buildings housing individuals at low risk of infection[J].Clin Infect Dis,1998;26(1):138-140.
[4]Lin YS,Stout JE,Yu VL,Vidic RD.Disinfection of water dis-tribution systems for Legionella[J].Semin Respir Infect,1998;13(2):147-159.
[5]Abad FX,Pinto RM,Bosch A.Disinfection of human enteric viruses on fomites[J].FEMS Microbiol Lett,1997;156(1):107-111.
[6]Luo WJ,Hu YB,Zhang WQ,Zhang J.Synergetic effect of cop-per and silver ions with free chlorine on the inactivation of Es-cherichia coli and coliphage f
2 [J].Di-si Junyi Daxue Xuebao(J Fourth Mil Med Univ),1996;17(5):385-387.
[7]Luo WJ,Zhang WQ,Hou Y,Zhang J,Hu YB.A study to seek for the sites of the inactivity of viruses by copper and silver ions with free chlorine[J].Di-si Junyi Daxue Xuebao(J Fourth Mil Med Univ),1997;18(5):439-441.
[8]Zhang WQ,Jiang SC,Ma WY,Luo WJ,Huo YB,Yu BY,Hou Y,Zhang Y.Screening suitable virus strains and cell lines in estab-lishment of cell infection model of poliovirus in water[J].Di-si Junyi Daxue Xuebao(J Fourth Mil Med Univ),1998;18(6):643-645.
[9]Zhang WQ,Ma WY,Luo WJ,Jiang SC,Huo YB,Hou Y,Zhang Y,Yu BY.Establishment a methods for the isolation and purification of polioviruses by PEG6000in combination with dif-ferential centrifugation[J].Di-si Junyi Daxue Xuebao(J Fourth Mil Med Univ),2000;21(1):38-40.
[10]Fang ZY,Wen LY,Zhang J,Jin SJ,Wang BJ,Xie QL,Wang SS.Surveiliance of wild poliovirus type I in China by PCR[J].Bingdu Xuebao(Chin J Virol),1994;10(1):51-56.
[11]Zhang WQ,Luo WJ,Jiang SC,Ma WY,Hu YB,Yu BY,Zhang J,Hou Y.Establishment of cell infection model for inac-tivation of poliovirus in water[J].Di-si Junyi Daxue Xuebao(J Fourth Mil Med Univ),1998;19(5):498-500.
[12]Adams MH.Bacteriophages[M].New York:Interscience Pub-lishers Inc.1959:27-29.
[13]Van AM,Van GJ.Levels of exposure from drinking water[J].Food Chem Toxicol,2000;38(1Suppl):S37-S42.
[14]Miyamoto M,Yamaguchi Y,Sasatsu M.Disinfectious effects of hot water,ultraviolet light,silver ions and chlorine on strains of Legionella and nontuberculous mycobacteria [J].Microbios,2000;101(398):7-13.
[15]Blackmer F,Reynolds KA,Gerba CP,Pepper IL.Use of inte-grated cell culture-PCR to evaluate the effectiveness of po-liovirus inactivation by chlorine[J].Appl Environ Microbiol,2000;66(5):2267-2268.
[16]Payment P.Poor efficacy of residual chlorine disinfectant in drinking water to inactivate waterborne pathogens in distribution systems[J].Can J Microbiol,1999;45(8):709-715.
(第四军医大学预防医学系环境与劳动卫生学教研室,陕西西安710033)